TURBULENTE VERMISCHUNG RUNDER KALTLUFTSTRAHLEN MIT UMGEBENDER RUHENDER HEISSLUFT

W. SZABLEWSKI

Institut für Angewandte Mathematik und Mechanik, Berlin

(Received 11 January 1963)

Zusammenfassung—Auf der Grundlage des vom Verfasser aufgestellten Gleichungssystems werden für den Kernbereich und den asymptotischen Bereich der turbulenten Vermischung eines runden Kaltluftstrahls mit umgebender Heissluft die Geschwindigkeits- und Temperaturfelder berechnet. Mit Messungen der Geschwindigkeit und Temperatur längs der Strahlachse zeigt die Theorie für den asymptotischen Bereich eine befriedigende Übereinstimmung.

FORMELZEICHEN

- a, b, Schrittweiten des Fortsetzungsverfahrens;
- *b*₁, Mischbreite des Geschwindigkeitsfeldes;
- B, asymptotischer Beiwert definiert durch Gleichung (39);
- $c_1 \qquad = b_1/x;$
- c_p, spezifische Wärme bei konstantem Druck;
- *E*, Austauschkoeffizient;
- r_o , Düsenradius;
- T, absolute Temperatur;
- *u*, *v*, Geschwindigkeitskomponenten;
- x, r, Zylinderkoordinaten;
- U, asymptotischer Beiwert definiert durch Gleichung (39);
- ϵ , scheinbare kinematische Zähigkeit definiert durch Gleichung (7) und Gleichung (38);
- η , ξ , dimensionslose Koordinaten definiert durch Gleichung (12) und Gleichung (39);
- $\vartheta = T T_1;$
- Θ, asymptotischer Beiwert definiert durch Gleichung (39);
- κ_1 , empirischer Koeffizient definiert durch Gleichung (7) und Gleichung (38);
- ρ , Dichte;
- σ, Streckungsfaktor definiert durch Gleichung (11) und Gleichung (44);

- φ dimensionslose Geschwindigkeitskom-
- χ }, ponenten und dimensionslose Tem- ψ \downarrow peratur; definiert auf p. 741 und durch Gleichung (39);
- $\Phi_o = (\partial \varphi / \partial \xi)_{\xi=0};$

$$\Phi_1 = (\partial \varphi / \partial \xi)_{\xi=a}$$

$$X_o = (\partial \chi / \partial \xi)_{\xi=0};$$

- $X_1 = (\partial \chi / \partial \xi)_{\xi=a};$
- $\Psi_o = (\partial \psi / \partial \xi)_{\xi=0};$
- $\varphi_o(\eta), \chi_o(\eta), \psi_o(\eta),$ Profile für $\xi = 0;$
- φ_1, χ_1 , Profile definiert durch Gleichung (27);
- φ_2 , χ_2 , Profile definiert durch Gleichung (32).

Indizes

- A, Strahlachse;
- 0, Düsenmündung;
- 1, Aussenluft.

I. EINLEITUNG

IN EINER Reihe von Arbeiten wurde vom Verfasser [1] die turbulente Ausbreitung von Heissluftstrahlen in bewegter und ruhender Aussenluft beschrieben. Die vorliegende Arbeit erweitert diese Untersuchungen auf das technisch wichtige Modell der Kühlung von Heissluft mittels Einblasens von Kaltluftstrahlen.

Grundlage der Berechnung bildet das vom Verfasser [1, a] aufgestellte Gleichungssystem zur Berechnung turbulenter Strömungen von Gasen stark veränderlicher Dichte. Dieses zeichnet sich, wie noch bemerkt werden soll, gegenüber anderen bekannt gewordenen Systemen [2] durch die Berücksichtigung des Einflusses der Dichteschwankungen aus.

Im Mischungsfeld eines Düsenstrahls können wir bekanntlich drei Bereiche unterscheiden: Von der Düsenmündung aus gesehen, haben wir zunächst den *Kernbereich*, der durch das Vorhandensein des durch die Mischung noch nicht berührten Strahlkerns gekennzeichnet ist. In grösserer Entfernung von der Düsenmündung befolgen im *asymptotischen Bereich* die Felder der mittleren Zustandsgrössen Ähnlichkeitsgesetze. Beide Bereiche werden durch einen Übergangsbereich verbunden. Die vorliegende Arbeit erstreckt sich auf die beiden erstgenannten Bereiche.

Im Mischungsfeld nehmen wir konstanten statischen Druck an. Demgemäss beschränkt sich die hier gegebene Theorie des Kernbereichs und des asymptotischen Bereichs auf Unterschallstrahlen.

Die Berechnung erfolgt nach dem Schema der bereits genannten Arbeiten [1]. Mit Hinweis auf diese begnügen wir uns im Bericht mit den Merkmalen der Theorie.

II. GLEICHUNGEN

Unter der Voraussetzung konstanten Drucks lauten die Gleichungen des rotationssymmetrischen Mischungsfelds, das als im zeitlichen Mittel stationär angenommen wird:

Impuls

$$\frac{\partial r \bar{\rho} \bar{u}^2}{\partial x} + \frac{\partial r \bar{\rho} \bar{u} \bar{v}}{\partial r} = \epsilon(x) \frac{\partial}{\partial r} \left(r \bar{\rho} \frac{\partial \bar{u}}{\partial r} + E r \bar{u} \frac{\partial \bar{\rho}}{\partial r} \right).$$
(1)

Energie

$$\frac{\partial r \bar{\rho} \bar{u} \overline{c_p T}}{\partial x} + \frac{\partial r \bar{\rho} \bar{v} \overline{c_p T}}{\partial r} = E \epsilon(x) \frac{\partial}{\partial r} \left(r \frac{\partial \bar{\rho} \overline{c_p T}}{\partial r} \right).$$
(2)

Masse

$$\frac{\partial r \bar{\rho} \bar{u}}{\partial x} + \frac{\partial r \bar{\rho} \bar{u}}{\partial r} = E \epsilon(x) \frac{\partial}{\partial r} \left(r \frac{\partial \bar{\rho}}{\partial r} \right). \tag{3}$$

(Die Querstriche, die zeitliche Mittelwertbildung bezeichnen, werden im Folgenden fortgelassen.)

Hierbei bedeuten x, r Zylinderkoordinaten und u, v die entsprechenden Geschwindigkeitskomponenten, ρ die Dichte. *T* die absolute Temperatur, c_p die spezifische Wärme bei konstantem Druck.

Die scheinbare kinematische Zähigkeit der Strömung wird nach Prandtl [3] gleich

$$\epsilon(x) = \kappa_1 b_1(x) \left| \bar{u}_{\max} - \bar{u}_{\min} \right| \tag{4}$$

gesetzt, wo $b_1(x)$ die Mischbreite des Geschwindigkeitsfeldes, $|u_{\max} - u_{\min}|$ die Geschwindigkeitsspanne über derselben und κ_1 einen empirischen Koeffizienten bedeuten.

Der Koeffizient E im Gleichungssystem ist ein Mass dafür, dass den substantiellen Eigenschaften eines Flüssigkeitselements eine andere Länge des Mischungsweges beim turbulenten Auztausch zuzuschreiben ist als der während des Transports Druckschwankungen ausgesetzten Geschwindigkeit. Die Analyse der von Pabst [4] an runden Heissluftstrahlen durchgeführten Messungen ergab

$$E = 2. \tag{5}$$

Beim Ablesen der Mischbreite des normierten Geschwindigkeitsfeldes zwischen den Grenzen 0,95 und 0,05 hatte sich aus dem Experiment der empirische Koeffizient κ_1 der Theorie praktisch als Konstante für das gesamte Mischungsfeld ergeben [1]:

$$\kappa_1 \approx 0,0082$$
 für den Kernbereich.

(6)

 $\kappa_1 \approx 0,0085$ für den asymptotischen Bereich.

Die angegebenen empirischen Werte werden auch der vorliegenden Untersuchung zugrundegelegt.

Unter Vernachlässigung von Reibungseinflüssen der Düsenwand werden die Profile der Geschwindigkeit und Temperatur in der Mündung als rechteckig angenommen. Mit u_0 bzw. T_0 werden die Geschwindigkeit bzw. Temperatur des Strahls in der Mündung, mit T_1 die Temperatur der Aussenluft bezeichnet.

III. KERNBEREICH*

Für diesen (Abb. 1) ergibt sich nach (4)

$$\epsilon(x) = \kappa_1 b_1(x) u_0. \tag{7}$$

* Die Durchführung der schwierigen numerischen Rechnungen verdanke ich Frau Lilli Schulze, die Anfertigung der Zeichnungen Fräulein Ingrid Smeja.

ABB. 1. Geschwindigkeitsfeld.

Die Grösse c_p wird als Konstante behandelt. Mittels der Zustandsgleichung für ideale Gase bei konstantem Druck

$$\rho T = \text{const.} \tag{8}$$

ersetzen wir in den Gleichungen ρ durch $\vartheta (\vartheta = T - T_i)$:

$$\rho = \frac{\text{const.}}{T_1} \frac{1}{1 + (\vartheta/T_1)}.$$
 (9)

Es werden weiter die dimensionslosen Funktionen $\varphi = u/u_o$ und $\chi = \vartheta/\vartheta_o$, wo $\vartheta_o = T_o - T_1$ ist, eingeführt und die Längen mit dem Düsenradius r_o dimensionslos gemacht. Transformation der Gleichungen (1) bis (3) auf die für die Behandlung unseres Problems zweckmässige Strahlenkoordinate

$$\frac{r-r_o}{x} \tag{10}$$

ergibt dann, wenn wir noch mit dem Streckungsfaktor

$$\sigma = \frac{1}{\sqrt{(2\kappa_1 c_1)}}, \quad (c_1 = b_1/x)$$
 (11)

die Variablen

$$\xi = \frac{1}{\sigma} \frac{x}{r_o} , \ \eta = \sigma \frac{r - r_o}{x}$$
(12)

einführen und ψ für $\sigma v/u_0$ schreiben, schliesslich folgendes Gleichungssystem.

Impuls

$$\frac{\partial^{2}\varphi}{\partial\eta^{2}} + \frac{\partial\varphi}{\partial\eta} \left[2(\varphi\eta - \psi) - (E+1) \frac{(\vartheta_{o}/T_{1}) \partial\chi}{1 + (\vartheta_{o}/T_{1})\chi} + \frac{\xi}{1 + \xi\eta} \right] - 2\xi\varphi \frac{\partial\varphi}{\partial\xi} = 0.$$
(13)

Energie

$$\frac{\partial^{2}\chi}{\partial\eta^{2}} + \frac{\partial\chi}{\partial\eta} \left[\frac{2}{E} (\varphi\eta - \psi) - 2 \frac{(\vartheta_{o}/T_{1}) \frac{\partial\chi}{\partial\eta}}{1 + (\vartheta_{o}/T_{1})\chi} + \frac{\xi}{1 + \xi\eta} \right] - \frac{2}{E} \xi \varphi \frac{\partial\chi}{\partial\xi} = 0. \quad (14)$$

Masse

$$\xi \frac{\partial \varphi}{\partial \xi} - \eta \frac{\partial \varphi}{\partial \eta} + \frac{\partial \psi}{\partial \eta} + \psi \frac{\xi}{1 + \xi \eta} = 0.$$
 (15)

Im Vergleich mit dem Feld konstanter Dichte treten die unterstrichenen Glieder zusätzlich auf.

Dabei haben wir vorausgesetzt, dass für das jeweilige Modell, gekennzeichnet durch den Temperaturparameter ϑ_o/T_1 , der Streckungsfaktor

$$\sigma(x) = \text{const.} \tag{16}$$

Man kann nach (7) diese Annahme auch so lesen, dass für den Kernbereich κ_1 und b_1/x als Konstanten angesehen werden können.*

Die Randbedingungen lauten im Kernbereich, wenn man beachtet, dass die Strahlachse die Koordinate $\eta = -1/\xi$ hat,

$$\varphi, \chi \longrightarrow \begin{cases} 1 & \text{für } \eta \longrightarrow \begin{cases} -1/\xi \\ \infty \end{cases}$$
 (17)

Weiter ist aus Symmetriegründen das Verschwinden der Querkomponente v auf der Strahlachse zu fordern:

$$\psi \longrightarrow 0 \text{ für } \eta \longrightarrow -\frac{1}{\xi}.$$
 (18)

Das System der partiellen Differentialgleichungen (13) bis (15) mit den zugehörigen Randbedingungen (17) und (18) wird mittels eines Fortsetzungsverfahrens numerisch berechnet, bei dem mit Ausgang von den Anfangsprofilen (Profile der Geschwindigkeit und Temperatur für $\xi \rightarrow 0$) das Mischungsfeld in Differenzenschritten approximativ aufgebaut wird.

^{*} Diese als gute Näherung für den Kernbereich anzusehende Annahme bedeutet vom mathematischen Standpunkt aus keine Einsehränkung der Allgemeinheit, da nach einem Hinweis von Kauschus [5] der Fall einer allgemeinen Funktion $\sigma(x)$ im Kernbereich sich auf den Fall $\sigma(x) = \text{const.}$ mittels einer Transformation reduzieren lässt.

	Antipologia da de de la companya de la construcción de la companya de la companya de la companya de la companya	a p 1 minut 1 minute inp 1 history and an and and and and and and and and	and the second sec		fJQ.m	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		· · · · · · · · · · · · · · · · · · ·	;
				и _о — И ₁ и _о	North Contraction of Contraction	19 M - 19			
n prem v bel a fangel og sam af werden men gemen skriver og en er ek skriver skriver skriver	of a second se	φa	 Proceedings (access) (acce		Xo	and the second s		ψο	
ña,	$\frac{\vartheta_o}{T_1} = -0.25$	$\frac{\vartheta_o}{T_1} = 0.50$	$\frac{9}{T_1}$ 0.75	$rac{artheta_n}{T_1}=-0.25$	$\frac{9_n}{T_1} = -0.50$	$\frac{\eta_o}{T_1}$ 0.75	$r_1^{9,e}$ 0.25	$\frac{\mathfrak{P}_0}{T_1} \sim 0.50$	$\frac{\vartheta_o}{T_1} = -0.75$
- 3,2 - 2.8	ar balance barren bernande	n man a mana di cananana mangananga nga kata kata na	and a construction of the second seco	1,000	1,000 0.999	000			The second control to make a control of
-24	1,000	1,000		0,996	766,0	866,0	0,000	0,000	0,000
2,0	0,999	666'0	1,000	0,989	0,992	0,995	0,002	0,001	0,001
-1,6	0,995	0,996	0,998	0,973	0,980	0,988	0,010	0,006	0,003
7,-	0,980	0,986	566,0	0,942	0,956	0,974	0,031	0,021	0,010
0°0	0,939	0066,0	116,0	0,892	0,91/	0,000 0	0,0,0	0,050	0,026
0,4 4,0	0,620	0,892	0,959 0.864	0,820 0.728	0,836	0,909 0,849	0,118	0,087	0,048
0,4	0,574	0,635	0,744	0,625	0,677	0,767	0.110	+0.076	+0.035
0,8	0,418	0,473	0,584	0,520	0,570	0,664	+0,017	-0,021	-0,062
1,2	0,285	0,324	0,413	0,422	0,464	0,549	0,115	0,169	0,233
1,6	0,184	0,207	0,262	0,336	0,366	0,432	0,254	-0,331	-0,443
2,0	0,115	0,125	0,151	0,263	0,283	0,326	0,378	-0,478	0,641
7, 6 4, 6	0,070	0,072	0,080	0,204	0,214	0,237	-0,477	0,593	0,796
2 C	0,042	0,040	0,040	(cr,0	0,160	0,167	0,550	-0,675	0,899
1, L 1 A	0,024	0,012	0,000	0,120	0,110	0,110	0.635	-0,129	796,0
4,0 0,4	0,008	0,006	0,004	0,070	0.064	0.053	-0.658	-0,785	- 1.015
4,4	0,005	0,003	0,002	0,053	0,046	0,036	-0,672	-0,798	1.024
4,8	0,003	0,002	0,001	0,040	0,033	0,024	0,682	0,805	-1,029
5,2	0,002	0,001	0,000	0,031	0,024	0,016	0,688	0,809	1,031
5,6	0,001	0,000		0,023	0,017	0,010	0,691	0,812	1,032
6,0	0,000			0,018	0,013	0,007	0,694	-0,813	- 1,033
6,4				0,013	6000	0,005	0,695	0,814	1,033
ο r Q				0,010	0,006	0,003	0,696	0,815	-1,033
7,1				0,008	c00,0	0,002	0,696		
0'1				0000			0,697		
				0,000 0,000	0,000 0,000	000°0	↓ 0,697	↓ 0.815	-1.034

Tabelle 1. Anfangsprofile

742

W. SZABLEWSKI

1. Anfangsprofile

..

Mit $\xi = 0$ erhält man aus (13) bis (15) für die Anfangsprofile φ_o , χ_o und ψ_o das System gewöhnlicher Differentialgleichungen

$$\varphi_{o}^{'} + \varphi_{o}^{'} \left[2(\varphi_{o}\eta - \psi_{o}) - (E+1) \frac{(\vartheta_{o}/T_{1})\chi_{o}^{'}}{1 + (\vartheta_{o}/T_{1})\chi_{o}} \right] = 0$$
(19)

$$\chi_{o}^{'} + \chi_{o}^{'} \left[\frac{2}{E} (\varphi_{o}\eta - \psi_{o}) - 2 \frac{(\vartheta_{o}/T_{1})\chi_{o}^{'}}{1 + (\vartheta_{o}/T_{1})\chi_{o}} \right] = 0 \quad (20)$$

$$-\eta\varphi'_o + \psi'_o = 0 \tag{21}$$

(Striche bedeuten Ableitungen nach η) mit den sich aus (17) und (18) ergebenden Randbedingungen

$$\begin{aligned} \varphi_o, \ \chi_o &\longrightarrow \begin{cases} 1 & \text{für } \eta \longrightarrow \begin{cases} -\infty \\ \infty \end{cases} \\ \psi_o &\longrightarrow 0 & \text{für } \eta \longrightarrow -\infty \end{cases} \end{aligned}$$
 (22)

Das Gleichungssystem beschreibt die turbulente

Vermischung eines ebenen Luftstrahls mit ruhender Aussenluft, die zunächst durch eine Scheidewand getrennt sind und sich dann mischen (vgl. Abb. 1): sogenanntes Modell der Auflösung eines ebenen Strahlrandes. Dieses Modell wird durch den Strahl in unmittelbarer Nähe der Düsenkante realisiert.

Die Integration des Systems (19) bis (21) lässt sich nur numerisch durchführen und erfolgte mittels Iteration. Die Berechnung wurde für die Parameterwerte

$$\vartheta_o/T_1 = -0.75; -0.50; -0.25$$

durchgeführt; siehe Tabelle 1.

Die erhaltenen Geschwindigkeits- und Temperaturverteilungen sind in Abb. 2 und 3 wiedergegeben, in die wir auch noch den Fall $\vartheta_o/T_1 = 0$ eingetragen haben. Es ist ersichtlich, dass der Winkelraum der Mischung für den kälteren Strahl in seinem wesentlichen, an den Strahlkern anschliessenden Teil eine Drehung nach aussen hin erfährt (Quasi-Parallelverschiebung zu positiven η hin); während dagegen der Übergang in die umgebende Luft mit schwach

ABB. 2. Geschwindigkeitsprofile für $\xi = 0$.

ABB. 3. Temperaturprofile für $\xi = 0$.

entgegengesetzter Tendenz unter geringer Verengung des Winkelraumes insgesamt bzw. unter geringer Verkleinerung der Mischbreite erfolgt.

Die Drehung des wesentlichen Teiles des Winkelraumes der Mischung, mit Scheitel in der Düsenkante, lässt bereits, was in Übereinstimmung mit dem Experiment die weitere Rechnung ergibt (vgl. Abb. 10), auf eine grössere Reichweite des kälteren Strahls, gemessen durch die Länge des Strahlkerns, schliessen.

Lesen wir die Mischbreite σc_1 des Geschwindigkeitsfeldes in η -Koordinaten zwischen den Grenzen $\varphi = 0.95$ und 0.05 ab, so ergeben sich nach der aus (11) resultierenden Formel

$$\sigma = \frac{1}{2\kappa_1(\sigma c_1)} \tag{23}$$

mit $\kappa_1 = 0,0082$ (vgl. Abschn. II) folgende Werte des Streckungsfaktors σ

$$\vartheta_o/T_1 = -0.25 : -0.50; -0.75$$

 $\sigma = -19.235; -17.91; -17.31.$

Abb. 4 zeigt die Verteilung der Querkomponente der Geschwindigkeit und ergibt erwartungsgemäss ein Anwachsen des Zustroms aus dem umgebenden Medium für den kälteren bzw. eine grössere Dichte besitzenden Strahl.

2. Fortsetzungsverfahren

Ausgehend von den Anfangsprofilen (siehe vorangehenden Paragraphen) berechnen wir mittels Differenzenrechung schrittweise das Mischungsfeld an Hand des Systems (13) bis (15). Da die Isotachen und Isothermen innerhalb des Kernbereichs nur schwach gekrümmt verlaufen (vgl. Abb. 10), kommt man in der hier gegebenen Formulierung des Problems (Transformation auf Strahlenkoordinaten!) mit zwei bis drei Differenzenschritten aus.

a. Erster Fortsetzungsschritt

Differentiation der Gleichungen (13) bis (15) ergibt für die benötigten Ableitungen $(\partial \varphi / \partial \xi)_{\xi=0}$ bzw. $(\partial \chi / \partial \xi)_{\xi=0}$ bzw. $(\partial \psi / \partial \xi)_{\xi=0}$, bezeichnet mit Φ_o bzw. X_o bzw. Ψ_o , die Gleichungen

ABB. 4. Verteilung der Querkomponente der Geschwindigkeit für $\xi = 0$.

$$\Phi_{o}^{\prime\prime} + \Phi_{o}^{\prime} \left(\frac{-\varphi_{o}^{\prime\prime}}{\varphi_{o}^{\prime}} \right) + \varphi_{o}^{\prime} \left\{ 2 \left(\Phi_{o} \eta - \Psi_{o} \right) \right.$$

$$\left. - \left(E + 1 \right) \left[\frac{\left(\vartheta_{o}/T_{1} \right) X_{o}}{1 + \left(\vartheta_{o}/T_{1} \right) \chi_{o}} \right]^{\prime} + 1 \right\}$$

$$\left. - 2\varphi_{o} \Phi_{o} = 0 \right\}$$

$$\left. \left\{ 2 \left(\Phi_{o} \eta - \Psi_{o} \right) \right\} \right\}$$

$$\left. \left\{ 2 \left(\Phi_{o} \eta - \Psi_{o} \right) \right\} \right\}$$

$$\left. \left\{ 2 \left(\Phi_{o} \eta - \Psi_{o} \right) \right\} \right\}$$

mit den aus (17) folgenden Randbedingungen

$$\Phi_o \longrightarrow 0$$
 für $\eta \longrightarrow -\infty \\ \infty$.

Weiter

$$X_{o}^{\prime\prime} + X_{o}^{\prime} \left(\frac{-\chi_{o}^{\prime\prime}}{\chi_{o}^{\prime}}\right) + \chi_{o}^{\prime} \left\{\frac{2}{E} (\boldsymbol{\Phi}_{o} \eta - \boldsymbol{\Psi}_{o}) - 2 \left[\frac{(\vartheta_{o}/T_{1})X_{o}}{1 + (\vartheta_{o}/T_{1})\chi_{o}}\right]^{\prime} + 1\right\} - \frac{2}{E} \varphi_{o} X_{o} = 0$$

$$(25)$$

mit den (17) gemässen Randbedingungen

$$X_o \longrightarrow 0$$
 für $\eta \longrightarrow \frac{-\infty}{\infty};$

und schliesslich, eingedenk (18),

$$\Psi_o = -\int_{-\infty}^{\eta} \psi_o \,\mathrm{d}\eta + \eta \Phi_o - 2\int_{-\infty}^{\eta} \Phi_o \,\mathrm{d}\eta.$$
 (26)

Dieses Gleichungssystem wurde numerisch auf

iterativem Wege gelöst. In den Abb. 5 und 6 sind die erhaltenen Verteilungen für Φ_0 und X_0 dargestellt. Sie zeigen eine mit dem Parameter ϑ_0/T_1 gehende Rechtsversetzung der Kurven, die dem analogen Verhalten der Anfangsprofile (Abb. 2, 3) entspricht. Die mit wachsender negativer Temperaturdifferenz kleiner werdenden Amplituden entsprechen der zu erwartenden geringeren Krümmung der Isotachen und Isothermen zur Strahlachse hin für kältere Düsenstrahlen. Das für grosse η sich zeigende Übergreifen der Verteilungen auf positive Werte vor dem Abklingen auf Null zeigt eine Abkrümmung der äusseren Isotachen und Isothermen von der Achse weg an.

Der erste Fortsetzungsschritt liefert, ausgehend von den Anfangsprofilen, mit der Schrittweite *a* approximativ die Profile

$$\varphi_1 = \varphi_o + a\Phi_o, \ \chi_1 = \chi_o + aX_o. \tag{27}$$

In der vorliegenden Rechnung wurde die Schrittweite a = 0,2 genommen. Dabei wird wegen des asymptotischen Charakters der Funktionen die erstere der Randbedingungen (17) nicht exakt erfüllt; doch ist hier bei einem Zahlenwert von $\eta = -1/\xi = -1/a = -5$ der Fehler sehr klein. Die Querkomponente ψ_1 (Abb. 7) der Geschwindigkeit an der Stelle $\xi = a$ lässt sich dann nach der aus dem System (13) bis (15) zu gewinnenden expliziten Formel

$$\psi_{1} = -\frac{1}{2} \frac{\varphi_{1}}{1+a\eta} \int_{-1/\xi}^{\eta} \frac{(1+a\eta) \left\{ \varphi_{1}^{''} + \varphi_{1}^{'} \left[-(E+1) \frac{(\vartheta_{o}/T_{1})\chi_{1}}{1+(\vartheta_{o}/T_{1})\chi_{1}} + \frac{a}{1+a\eta} \right] \right\}}{\varphi_{1}^{2}} d\eta \quad (28)$$

berechnen.

b. Zweiter Fortsetzungsschritt

Die für den zweiten Schritt benötigten Funktionen $(\partial \varphi / \partial \xi)_{\xi=a}$ bzw. $(\partial \chi / \partial \xi)_{\xi=a}$, bezeichnet mit Φ_1 bzw. X_1 , berechnen wir dann nach (13) bis (15) aus den expliziten Formeln

$$\Phi_{1} = \frac{\varphi_{1}^{\prime\prime} + \varphi_{1}^{\prime} \left[2(\varphi_{1}\eta - \psi_{1}) - (E+1) \frac{(\vartheta_{o}/T_{1})\chi_{1}}{1 + (\vartheta_{o}/T_{1})\chi_{1}} + \frac{a}{1 + a\eta} \right]}{2a\varphi_{1}}$$
(29)

und

$$X_{1} = \frac{\chi_{1}^{''} + \chi_{1}^{'} \left[\frac{2}{E} (\varphi_{1} \eta - \psi_{1}) - 2 \frac{(\vartheta_{o}/T_{1})\chi_{1}^{'}}{1 + (\vartheta_{o}/T_{1})\chi_{1}} + \frac{a}{1 + a\eta} \right]}{(2/E) a\varphi_{1}},$$
(30)

3B—H.M.

wobei nach (27)

$$\varphi'_{1} = \varphi'_{o} + a \Phi'_{o}, \quad \chi'_{1} = \chi'_{o} + a X'_{o} \\ \varphi'' = \varphi''_{o} + a \Phi''_{o}, \quad \chi''_{1} = \chi''_{o} + a X''_{o}.$$
 (31)

Die Verteilungen der berechneten Funktionen Φ_1 und X_1 , die denselben Charakter zeigen wie die Funktionen Φ_0 , X_0 (Abb. 5, 6), sind in den Abb. 8, 9 dargestellt. Sie sind nur für einen Teil-

bereich wiedergegeben; für grössere η -Werte (Grenze gestrichelt markiert) ergibt die Rechnung einen sehr unregelmässigen (und hier nicht dargestellten) Verlauf der Kurven. Die mit Tischrechenmaschinen erzielte Rechengenauigkeit war offenbar nicht ausreichend, um die in den Formeln (29) und (30) für $\eta \rightarrow \infty$ auftretende Stelle der Unbestimmtheit zu bewältigen.

ABB. 7. Verteilung der Querkomponente der Geschwindigkeit für $\xi = a$.

Doch betrifft der so nicht erfasste Bereich praktisch nur die äusseren Grenzen des Mischungsfeldes.

Mittels Φ_1 , X_1 können wir dann den zweiten Fortsetzungsschritt ausführen und erhalten mit der Schrittweite *b* approximativ die Profile

$$\varphi_2 = \varphi_1 + b\Phi_1 = \varphi_0 + a\Phi_0 + b\Phi_1$$

$$\chi_2 = \chi_1 + bX_1 = \chi_0 + aX_0 + bX_1.$$

$$(32)$$

Die Schrittweite *b* wurde zur Ermittlung des Geschwindigkeitsfeldes bis zum Kernende, das die Grenze der Anwendbarkeit von (7) und damit des Gleichungssystems (13) bis (15) bezeichnet, in den Grenzen b = 0,15 bis 0,60 variiert (Tabelle 2). Wir gelangen dabei z.T. etwas über das Kernende hinaus, doch ist für die geringe Überschreitung des Kernendes (Isotache 0,95) der Fehler als gering anzusehen. Die Konstruktion des Abfalls der Geschwindigkeit innerhalb der angegebenen Schranke hat dabei zu beachten, dass $\varphi_2(\eta)$ an der Stelle $\eta = -1/\xi$ (Koordinate der Strahlachse) aus Symmetriegründen die Tangente Null hat.

3. Feld der Isotachen und Isothermen im Kernbereich

Wir beschreiben das Mischungsfeld mittels des Verlaufs der Isotachen und Isothermen: r/r_o über x/r_o für $\varphi = \text{const.}$ und $\chi = \text{const.}$ Die effektiven Geschwindigkeiten und Temperaturen ergeben sich zu

$$u = u_0 \varphi, \quad T = (T_0 - T_1)\chi + T_1.$$
 (33)

Für die Koordinaten haben wir

$$\frac{r}{r_o} = 1 + \xi \eta, \quad \frac{x}{r_o} = \sigma \xi; \ \sigma \text{ siehe Tabelle 2.}$$
 (34)

Tabelle 2 enthält das Ergebnis unserer Rechnung. Die erhaltenen Isotachen- und Isothermenfelder für den Kernbereich sind in Abb. 10 dargestellt. Es ergibt sich erwartungsgemäss, dass kältere Strahlen eine grössere Reichweite haben bzw. die Isotachen und Isothermen $\varphi = \text{const.}$ und $\chi = \text{const.}$ in axialer Richtung weiter reichen. Dagegen werden die äusseren

m	-1	11.	2
11	abei	le	4

					lse	otachen				· •··· ·		
$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} x \end{pmatrix}$						$\frac{u_o}{u_i}$	$\frac{u_1}{2} \approx 1$					
$\xi = \begin{pmatrix} -\\ \sigma \end{pmatrix} \begin{pmatrix} -\\ r_0 \end{pmatrix}$		ϑ_o/T_1	= - 0,7	5		ϑ_o/T_1	- 0,5	0		ϑ_o/T_1	- 0,2	5
	0	0,20	0,35	0,45	0	0,20	0,35	0,45	0	0,20	0,35	0,45
$\varphi = 0,05$	1	1,56	1,88	2,08	1	1,49	1,89	2,23	1	1,55	1,93	2,17
0,1	1	1,46	1,77	1,98	1	1,44	1,75	1,95	1	1,42	1,75	1,97
0,3	1	1,29	1,51	1,65	1	1,24	1,42	1,54	1	1,22	1,38	1,49
0,5 r	1	1,19	1,32	1,41	1	1,13	1,23	1,28	1	1,10	1,17	1,24
$0,7 r_0$		1,09	1,15	1,19	1	1,04	1,05	1,05		1,00	0,99	0,97
0,9		0,96	0,92	0,88		0,90	0,81	0,75		0,87	0,76	0,67
0,95 0,99	1	0,89 0,78	0,80 0,59	0,73 0,47	1	0,84 0,73	0,70 0,50	0,81	1	0,82 0,71	0,65 0,47	0,54 0,29
0,95 0,99		$\frac{r}{r_o} = 0$ 1	$\operatorname{für} \xi = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,78 ,59		$\frac{r}{r_o} = 0$	für $\xi = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$),74),57	1	$\frac{r}{r_{\theta}} \approx 0$	$ \lim_{\xi \to 0} \xi = 0 $,69 ,54
					Iso	thermen						
$\xi = \left(\frac{1}{\sigma}\right) \left(\frac{x}{r_o}\right)$	$\frac{u_o - u_1}{u_o} = 1$											
	$\vartheta_o/T_1 = -0,75$			$\vartheta_o/T_1 = -0,50$			$\vartheta_o/T_1 = -0,25$					
	0	0,20	0,35	0,45	0	0,20	0,35	0,45	0	0,20	0,35	0,45
$\chi = 0.05$	1				1	1,80	2,35	2,69	1	2,04	2,37	2,72
0,1	1	1,72	2,40	2,90	1	1,74	2,25	2,61	1	1,75	2,27	2,63
0,3	1	1,41	1,78	2,06	1	1,36	1,65	1,84	1	1,35	1,63	1,91
0,5 <u>r</u>	1	1,25	1,43	1,55	1	1,19	1,29	1,35	1	1,14	1,23	1,27
$0,7 r_{o}$	1	1,11	1,17	1,19	1	1,04	1,03	1,01		1,00	0,95	0,91
0,9	1	0,91	0,81	0,73	1	0,84	0,68	0,56	1	0,81	0,62	0,47
0,95 0,99	1	0,82 0,65	0,65	0,51	1	0,75	0,55	0,30	1	0,75	0,40	0,28
0,95 0,99		$\frac{r}{r_a}=0.1$	für $\xi = \frac{0}{0}$,60 ,41		$\frac{r}{r_o} = 0$ f	für $\xi = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,56 ,40		$\frac{r}{r_o} = 0$	für $\xi = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,52 ,38

$$\frac{u_o-u_1}{u_o}=1$$

ϑ_o/T_1	-0,75	-0,50	-0,25
σ	19,235	17,908	17,313
σC_1	3,17	3,405	3,522
-			

Bedingt durch den Wert E = 2 des Übertragungsverhältnisses weist das Temperaturfeld eine wesentlich andere Struktur auf als das Geschwindigkeitsfeld, wie sich in seiner grösseren Breite und geringeren Tiefe zeigt.

Die Werte der Querkomponente $\psi = \sigma v/u_o$ sind in Abb. 4 und 7 dargestellt. Die effektive Querkomponente der Geschwindigkeit beträgt $v = u_o \psi/\sigma$.

Abb. 12 schliesslich zeigt noch den Verlauf der Geschwindigkeit und Temperatur längs der Strahlachse. W. SZABLEWSKI

ABB. 10. Feld der Isotachen und Isothermen.

IV. ASYMPTOTISCHER BEREICH

In grösserer Entfernung von der Düsenmündung, im asymptotischen Bereich, reduziert sich mit $\rho \approx \rho_1$ das System (1) bis (3) auf die bekannten Gleichungen konstanter Dichte:

Impuls

$$r\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial r}\right)=\epsilon(x)\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right).$$
 (35)

Energie

$$r\left(u \ \frac{\partial \vartheta}{\partial x} + v \ \frac{\partial \vartheta}{\partial r}\right) = E\epsilon(x) \ \frac{\partial}{\partial r}\left(r \ \frac{\partial \vartheta}{\partial r}\right) \quad (36)$$

mit $\vartheta = T - T_1.$

Masse

$$\frac{\partial ru}{\partial x} + \frac{\partial rv}{\partial r} = 0. \tag{37}$$

Die scheinbare kinematische Zähigkeit beträgt hier nach (4)

$$\epsilon(x) = \kappa_1 b_1(x) u_A(x), \qquad (38)$$

wo $u_A(x)$ die Geschwindigkeit des Düsenstrahls längs der Strahlachse bezeichnet.

Im asymptotischen Bereich sind die Verteilungen der mittleren Zustandsgrössen durch Ähnlichkeitsgesetze beschreibbar. Mittels dimensionsanalytischer Überlegungen gewinnt man aus obigen Gleichungen den folgenden Ansatz in der Ähnlichkeitskoordinate

$$\eta = \frac{r/r_o}{x/r_o};$$

Breite des Geschwindigkeitsfeldes

$$b_1/r_o = Bx/r_o;$$

Geschwindigkeitsverteilungen

γ

$$\frac{u}{u_o} = \frac{U}{x/r_o} \varphi(\eta), \quad \frac{v}{u_o} = \frac{1}{x/r_o} \psi(\eta); \qquad \left\{ \begin{array}{c} (39) \end{array} \right.$$

Temperaturverteilung

$$\frac{\vartheta}{\vartheta_o} = \frac{\Theta}{x/r_o} \chi(\eta), \quad (\vartheta_o = T_o - T_1);$$

mit den Beiwerten

 $\overline{\vartheta}$

$$B, U, \Theta$$
.

Damit ergeben sich dann aus (35) bis (37) die Gleichungen:

ABB. 11. Geschwindigkeit und Temperatur längs der Strahlachse.

ABB. 12. Geschwindigkeit längs der Strahlachse.

Impuls

$$- U\varphi \left(\varphi + \eta \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}\right) + \psi \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}$$
$$= \kappa_1 B U \left(\frac{\mathrm{d}^2\varphi}{\mathrm{d}\eta^2} + \frac{1}{\eta} \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}\right). \quad (40)$$

Energie

$$= U\varphi\left(\chi + \eta \frac{\mathrm{d}\chi}{\mathrm{d}\eta}\right) + \psi \frac{\mathrm{d}\chi}{\mathrm{d}\eta}$$
$$= E\kappa_1 B U\left(\frac{\mathrm{d}^2\chi}{\mathrm{d}\eta^2} + \frac{1}{\eta} \frac{\mathrm{d}\chi}{\mathrm{d}\eta}\right). \quad (41)$$

Masse

$$\psi + \eta \frac{\mathrm{d}\psi}{\mathrm{d}\eta} = U\eta \left(\varphi + \eta \frac{\mathrm{d}\varphi}{\mathrm{d}\eta}\right)$$
 (42)

mit den Randbedingungen

$$\varphi(0) = \chi(0) = 1, \\ \varphi(\pm \infty) = \chi(\pm \infty) = 0, \\ \psi(0) = 0.$$
 (43)

Für das Geschwindigkeitsfeld erhält man nach Schlichting [6] die Lösung

$$\varphi = \frac{1}{[1 + (\sigma\eta)^2]^2}, \quad \sigma\psi = \frac{U}{2}\,\sigma\eta\,\frac{1 - (\sigma\eta)^2}{[1 + (\sigma\eta)^2]^2} \quad (44)$$

mit dem Streckungsfaktor

$$\sigma = \frac{1}{\sqrt{(8\kappa_1 B)}}$$

Für das Temperaturfeld folgt

$$\chi = q^{1/E}.$$
 (45)

Die Bestimmung der die Achsenfunktionen

$$\frac{u_A(x)}{u_o} = \frac{U}{x/r_o}, \quad \frac{\vartheta_A(x)}{\vartheta_o} = \frac{\Theta}{x/r_o}$$

festlegenden Beiwerte U, Θ , sowie die Bestimmung des Beiwertes B der Mischbreite $b_1/r_0 = Bx/r_0$ erfolgt mittels der Erhaltungssätze des Impulses und der Energie: Der Impulsintegralsatz

$$\int_0^\infty \rho u^2 r \, \mathrm{d}r = \rho_o u_o^2 \, \frac{r_o^2}{2} \tag{46}$$

ergibt mit $\rho/\rho_o \approx \rho_1/\rho_o = 1 + (\vartheta_o/T_1)$, sowie bei Einsatz der erhaltenen Verteilungsfunktion (44) die Relation

$$\sigma^2 = \frac{U^2}{3} \left(1 + \frac{\vartheta_o}{T_1} \right). \tag{47}$$

Der Energieintegralsatz

$$\int_{0}^{\infty} \rho u \vartheta r \, \mathrm{d}r = \rho_{o} u_{o} \vartheta_{o} \frac{r_{o}^{2}}{2} \tag{48}$$

liefert mit (44) und (45)

$$\sigma^2 = \frac{U/\Theta}{1 + (2/E)} (1 + \vartheta_0/T_1). \tag{49}$$

Bei Ablesen der Breite σB des berechneten Profils $\varphi(\sigma\eta)$ erhält man dann aus den obigen Relationen folgende Formeln für den Streckungsfaktor σ und die Beiwerte:

$$\sigma = \frac{1}{8\kappa_1(\sigma B)};$$

$$U = \frac{\sqrt{3}}{8\kappa_1(\sigma B)} \frac{1}{[1 + (\vartheta_o/T_1)]^{1/2}},$$

$$\Theta = \frac{1 + 2/E}{3}U;$$

$$B = 8\kappa_1(\sigma B)^2.$$
(50)

Man kann aus den Formeln ablesen, dass der Abfall der Geschwindigkeit u/u_o und der Temperatur ϑ/ϑ_o (bzw. der Anstieg der effektiven Temperatur $T = T_1 + (T_o - T_1)\vartheta/\vartheta_o)$ längs der Strahlachse für kältere Strahlen schwächer ist. Entsprechend dem Umstand, dass das Übertragungsverhältnis E = 2 ist, ergibt sich weiterhin, dass die Temperatur ϑ/ϑ_o längs der Strahlachse stärker abfällt als die Geschwindigkeit.

V. VERGLEICH MIT MESSUNGEN

Messungen der turbulenten Vermischung von Kaltluftstrahlen mit umgebender Heissluft sind

Авв. 13. Temperatur längs der Strahlachse.

soweit dem Verfasser bekannt, nur von G. W. Balaschow [7] durchgeführt worden. Gegenüber dem mit normaler Temperatur ($\approx 20^{\circ}$ C) austretenden Düsenstrahl wies die umgebende Heissluft eine Temperaturdifferenz $T_1 - T_o \approx 900^{\circ}$ C auf. Das ergibt für den Temperaturparameter

$$\vartheta_o/T_1 \approx -0.75$$
, $(\vartheta_o = T_o - T_1)$.

In den Abb. 12 und 13 sind die theoretischen Ergebnisse von Abschn. IV mit den Messungen der Geschwindigkeit und Temperatur längs der Strahlachse verglichen worden.* (Dazu haben wir noch der Vollständigkeit halber die Messungen Corrsin und Uberoi an Heissluftstrahlen eingetragen.[†])

Für den Kaltluftstrahl erhält man mit dem aus (44) folgenden Mass $(\sigma B)_{0.05}^{0.95} = 1,7$ und mit $\kappa_1 = 0,0085$ [vgl. Abschn. II, (6)] nach Formel (50)

$$U = 30$$
; und mit $E = 2$ [vgl. (5)]
 $\Theta = (2/3) U = 20.$

(Für die Heissluftstrahlen mit $\vartheta_o/T_1 = 0.05$; 0.57; 1.0 betrugen die entsprechenden Werte U = 14.6; 12.0; 10.6).

Mit der experimentellen Temperaturverteilung des Kaltluftstrahls zeigt die Theorie eine

† Szablewski [1, f].

befriedigende Übereinstimmung. Weniger gut ist sie für die Geschwindigkeitsverteilung. Doch darf man wohl die Messungen als eine Bestätigung der Theorie ansehen.

LITERATUR

- 1a. W. SZABLEWSKI, Zur Theorie der turbulenten Strömung von Gasen stark veränderlicher Dichte, Ing.-Arch. 20, 67-72 (1952); b. Turbulente Vermischung ebener Luftstrahlen von fast gleicher Geschwindigkeit und stark unterschiedlicher Temperatur, Ing.-Arch. 20, 73-80 (1952); c. Turbulente Vermischung ebener Heissluftstrahlen, Ing.-Arch. 25, 10-25 (1957); d. Turbulente Ausbreitung runder Heissluftstrahlen in bewegter Luft, Ing.-Arch. 26, 358-377 (1958); e. Turbulente Ausbreitung eines runden Heissluftstrahls in ruhender Aussenluft, Ing.-Arch. 30, 96-104 (1961); f. Asymptotische Gesetze der turbulenten Ausbreitung von Heissluftstrahlen in bewegter und ruhender Aussenluft, Z. Angew. Math. Mech. 39, 50-67 (1959).
- 2a. S. I. PAI, Two-dimensional jet mixing of a compressible fluid, J. Aero. Sci. 16, 463-469 (1949); b. Axially symmetrical jet mixing of a compressible fluid, Quart. Appl. Math. 10, 141-148 (1952).
- L. PRANDTL, Bemerkungen zur Theorie der freien Turbulenz, Z. Angew. Math. Mech. 22, 241–243 (1942).
- 4. O. PABST, Die Ausbreitung heisser Gasstrahlen in bewegter Luft, Luftfahrttechn. 6, 271-279 (1960).
- 5. W. KAUSCHUS, Eine Bemerkung zur Theorie der turbulenten Ausbreitung von Heissluftstrahlen, *Ing.*-*Arch.* **31**, 37-39 (1963).
- 6. H. SCHLICHTING, *Grenzschicht-Theorie*, p. 455. Braun. Karlsruhe (1951).
- 7. G. W. BALASCHOW, Turbulent jets in a medium at high temperature, *Trudy Rostovskogo In-ta Inzh. Zh.-D. Transp.* 21, 156-170 (1958).

Abstract—On the basis of the author's system of differential equations the distributions of velocity and temperature are calculated for the core-region and the asymptotic region in the turbulent mixing of a round jet of cold air with a surrounding medium of hot air. The theory of the asymptotic region is in a fair agreement with experimental results of the velocity and the temperature along the axis of the jet.

Résumé—A partir du système d'équations différentielles donné par l'auteur on calcule les distributions de vitesses et de températures dans les régions centrale et asymptotique du mélange turbulent d'un jet d'air froid circulaire avec l'air chaud ambiant.

La théorie relative à la région asymptotique est en bon accord avec les résultats expérimentaux donnant les vitesses et les températures le long de l'axe du jet.

Аннотация— На основе выведенной автором системы дифференциальных уравнений определяются поля скоростей и температур в начальной и асимптотической областях турбулентного перемешивания круглой струи холодного воздуха с окружающим горячим воздухом. В асимптотической области теория удовлетворительно согласуется с данными измерения скоростей вдоль оси струи.

^{*} In Abb. 8 (dritte Messreihe) der Arbeit von Balaschow sind die angegebenen Abstände x = 154 bzw. 303 offenbar irrtümlich und als x = 303 bzw. 450 zu lesen.